TRANSMITTING BIOLOGICAL WAVEFORMS USING A CELLULAR PHONE


There exists a need to remotely monitor fully mobile patients in their natural environments. Monitoring a patient’s biological waveforms can track a patient’s vital signs or facilitate the diagnosis of a disease, which could then be treated to help prolong and/or improve the subject’s life. If a patient must be monitored without the delay associated with delivering data stored on a recording device, biotelemetry is necessary. Biotelemetry entails transmitting biological waveforms to a remote site for recording, processing and analysis. Due to the limitations of the currently popular methods of biotelemetry, this thesis proposes the use of the increasingly prevalent cellular phone system. An adaptor design is developed to facilitate biotelemetry utilizing the most common features of a cell phone, barring the need for cell phone modification, as required for affordability. As cell phones notoriously confound sensitive medical equipment, especially patient-connected devices, their use is often distanced from sensitive equipment. However, the desire to use cell phones to transmit biological waveforms requires their joint-proximity to patient-connected devices.The adaptor must amplify the waveforms while rejecting cell phone interference to achieve an adequate signal-to-noise ratio. As the frequency range of most biological data does not conform to the passband of the phone system, the adapter must modulate the biological data. To limit the adapter’s size and weight, this design exploits the cell phone’s battery power. Methods are also introduced to receive and reconstruct high-fidelity representations of the original biological waveform.
Download this project

WIRELESS BATTERY CHARGING SYSTEM USING RADIO FREQUENCY ENERGY HARVESTING

It seems these days that everyone has a cellular phone. Whether yours is for business purposes or personal use, you need an efficient way of charging the battery in the phone. But, like most people, you probably don’t like being tethered to the wall. Imagine a system where your cellular phone battery is always charged. No more worrying about forgetting to charge the battery. Sound Impossible?

It is the focus of this thesis to discuss the first step toward realizing this goal. A system will be presented using existing antenna and charge pump technology to charge a cellular phone battery without wires. In this first step, we will use a standard phone, and incorporate the charging technology into a commercially available base station. The base station will contain an antenna tuned to 915MHz and a charge pump. We will discuss the advantages and disadvantages of such a system, and hopefully pave the way for a system incorporated into the phone for charging without the use of a base station.

Through the years, technology has allowed the cellular phone to shrink not only the size of the ICs, but also the batteries. New combinations of materials have made possible the ability to produce batteries that not only are smaller and last longer, but also can be recharged easily. However, as technology has advanced and made our phones smaller and easier to use, we still have one of the original problems: we must plug the phone into the wall in order to recharge the battery. Most people accept this as something that will never change, so they might as well accept it and carry around either extra batteries with them or a charger. Either way, it’s just something extra to weigh a person down. There has been research done in the area of shrinking the charger in order to make it easier to carry with the phone. One study in particular went on to find the lower limit of charger size [1]. But as small as the charger becomes, it still needs to be plugged in to a wall outlet. How can something be called “wireless” when the object in question is required to be plugged in, even though periodically?

Now, think about this; what if it didn’t have to be that way? Most people don’t realize that there is an abundance of energy all around us at all times. We are being bombarded with energy waves every second of the day. Radio and television towers, satellites orbiting earth, and even the cellular phone antennas are constantly transmitting energy. What if there was a way we could harvest the energy that is being transmitted and use it as a source of power? If it could be possible to gather the energy and store it, we could potentially use it to power other circuits. In the case of the cellular phone, this power could be used to recharge a battery that is constantly being depleted. The potential exists for cellular phones, and even more complicated devices - i.e. pocket organizers, person digital assistants (PDAs), and even notebook computers - to become completely wireless.

Download this project

Blam, a simple feed reader for GNOME

Blam is an application for GNU / Linux designed for the desktop environment GNOME . This is a very simple feed reader with a very simple interface from which we can access our feeds. Blam also allows us to add, delete or edit a feed easily. It also gives us the ability to import OPML feed lists, and export the lists created with the program itself.

How to Install Blam in Ubuntu
Blam is available  from the official Ubuntu repositories.
 
$ sudo apt-get install blam